Value (and Costs) of Custom

Software Development
IT ARCRHITECTURE SUMMIT, 23 AUGUST 2017

Brian Loomis | Dewpoint

Q0 1) l ARCHITECTS |1t 1IRESOURCE

VUV IN OUR NETWORK R IT BFORIT ARCHITECTS



Working agenda:

Architects must understand
sources of value and sources of
“bad” costs

Architects must engage to
increase value and reduce cost
throughout the lifecycle
Development organizations
should invest in getting better
over time

Talk about value then costs

T AN

ation for All IT Architects




What'’s the first thing we do on a
project?

D.ewpomt



Value of software

* Defined in economic or business terms, not in SLOC or effort
e Post-internet boom, this can be defined as

# users * average return per user

* Decreases over time as technology becomes mainstream in a domain

e Return per user can be capped by delivery market
e E.g., an embedded device or 10T can only be less than the whole device pric
e Discretionary software is bounded by advertisement rates or discretionary income
* B2B software (service provider) is limited by business model dynamics

D.ewpomt






Effectiveness (value)

Differing cost curves through
different implementations —
some may vield different
points of maximum efficiency

d.D.ewpoint

Cost






Cost of software

e Adding up the (predominantly) labor and other resources required to get
custom software to market

* |f outsourced, there may be anomalies in cost due to sparse suppliers (locally)
or sparse buyers

e Cost is often paid up front for development, so start time matters (if value
decreases over time)

e Usually a risk premium involved in estimate

90/90 Rule: The first 90 percent of the code accounts for the first 90 percent of
the development time. The remaining 10 percent of the code accounts for the
other 90 percent of the development time. — Tom Cargqill, Bell Labs

D.ewpomt



Parametric models are deadX Long live parametric models!

e COCOMO as the first broad study, models like SEER, SLIM afterwards, use function points, use
case points or SLOC

Can one developer, part of a tester, part of a PM do a two-page spec in a month?
* Group “planning poker” when truly independent, maybe on Fibonacci sequences...

* Better than the alternative...
* Most projects are “expert estimated”, some are even estimated to available budget, | hear

* Most projects suffer the planning fallacy: optimistic estimates of things we may not have done before
(known-unknowns and unknown-unknowns) based on experience which is often “corrected”

* Technical complexity, size of spec, environmental complexity play a role

* The goal is not the specific model coefficients but that we keep a database of comparable
results and make better projections; corollary: models don’t help if you don’t use them!

* Architects need to not just understand but convey the limitations of the iron triangle if PMs
cannot

D.ewpomt



How to change procurement of software

Customers want predictable cost (and more importantly predictable value)

* Once cost is fixed, the amount of software which can be delivered is fixed as well (you just may not
know it!)

* The customer could be brought more formally into prioritizing what gets done first (with the explicit
assumption that we can’t do everything)

 What mechanism can we put in place to get trued up on cost? How honest are you with your
customer? The buyer of the software also has to have management reserve and agree that outsourcing
involves profitability. Change orders? Cost or profit sharing?

* Architects can do things later in the project to reduce cost

» Agile does not really help us here

D.ewpomt



4
[

7 60233 IS ofi> 27 0240

Half your time is spent fixing bugs

1. Source Lines of Code (KSLOC) Generated Per Year 200
2. Average Bugs Per 1000 SLOC" x 8
3. Number of Bugs in Code = 1,600
4. Average Costto Fix a Bug" x $1,500 v
5. Total Yearly Cost of Bug Fixing = 52,400,000
6. Yearly Cost of an Engineer” / $150,000 How ..
7. Number of Engineers Consumed with Bug Fixing = 16 %?.
8. Engineering Team Size / 40 Tests () Software
9. Percentage of Staff Used for Bug Fixing = 40% T
Software Testing Phase Where Bug Found Estimated Cost per Bug
System Test $5000 sarnas Whiskae JasenArbas Jeh Cursto
Integration Test $500
Full Build $50
S5

_ Unit Test / Test Driven Deve,

$16,000

85%

D % Defects
introduced
in this phase

D % Defects
found in
this phase

[l S Costto
repair defect
in this phase

s6nq jo abejuaniad

Unit Function Field Post
Test Test Test Release

Coding

Source: Applied Software Measurement, Capers Jones, 1996

D.ewpomt



An agile perspective

Requirements defect
found via traditional

Programming defect found via %
acceptance testing

Pair Programming &
N
N
Programming defect found via Design defect N
Continuous Integration found via traditional A

! system testing
\

Design or programming defect found \

I

|
Cost | via Test Driven Development (TDD)
!
|

l
’ Requirements or design defect found via

Active Stakeholder Participation
Progamming defect

found via traditional

/ Requirements or design defect _~ system testing

/
|/ found via Model Storming

-

Defect found via a
,,,,,,,,,, review or inspection

Defect found via independent
parallel testing

T e —

Length of Feedback Cycle Copyright 2006-2009 Scott W. Ambler D. eWp oint



wiyylyd /h/hah (221X

: 10e 10 14 J | Lode structure may be too lragmented
0 3 123 10 14 0 0 * Code stiucture may be too fragmented.
12 41 304 19 38 5 11 * Needs more comments. * Code structure may be too frag
(a} - 1% 10 14 () ) R Meda obe abi ise we = be los foe oes awbad
< >
24 Code Nature: Data Manipulation Oriented A
36046 Hours
- Cost $7209240 Quantitative Project Metric Not far off
<7 2M Files: 764
ﬁ o 41,29 LLOC: 91159
- Multi Line Comments: 825
c - Single Line Comments: 25087 Closer to
£ High Quality Comments: 24064
_— Stings: 32352 5K hours
00 Numerc Constants: 16118

Reference COCOMC(] estimates
Work (basic mode 41672 D Howxs v

D.ewpomt




How architects can reduce costs

* Spend more time in requirements on the right activities (MVP activities)

* Set the patterns — not just GoF, but error handling, database persistence, queuing, message passing,
secure coding, how to test...

* Less doco, teams with longevity together, refactoring — agile
* Use tools, justify moving away from tools
* Determine the whole platform (COTS inclusion for basics & platform components)

* Really question one-off late requirements and “process descriptions” of how it works today; avoid
heavy integrations

* Pair programming or getting team members to work in different parts of code
* Describe bugs accurately — often in the rush to be responsive, we stop doing this...
* Fix the whole bug

* Fallacy #2: | can skip testing because my team writes better code than average
 Fallacy #3: | don’t need patterns and can use junior developers to get the rate structure down

D.ewpomt



Thank you!

Brian Loomis, CITA-P

bloomis@dewpoint.com

D.ewpomt



