
Value (and Costs) of Custom
Software Development
IT ARCHITECTURE SUMMIT, 23 AUGUST 2017

An Association for All IT Architects

Brian Loomis | Dewpoint

Working agenda:

• Architects must understand

sources of value and sources of

“bad” costs

• Architects must engage to

increase value and reduce cost

throughout the lifecycle

• Development organizations

should invest in getting better

over time

• Talk about value then costs

An Association for All IT Architects

What’s the first thing we do on a
project?

• Defined in economic or business terms, not in SLOC or effort

• Post-internet boom, this can be defined as

users * average return per user

• Decreases over time as technology becomes mainstream in a domain

• Return per user can be capped by delivery market
• E.g., an embedded device or IoT can only be less than the whole device pric
• Discretionary software is bounded by advertisement rates or discretionary income
• B2B software (service provider) is limited by business model dynamics

Value of software

Cost

Ef
fe

ct
iv

en
es

s
(v

al
u

e)

Differing cost curves through
different implementations –
some may yield different
points of maximum efficiency

Cost curves vary based on experience, technology

• Adding up the (predominantly) labor and other resources required to get
custom software to market

• If outsourced, there may be anomalies in cost due to sparse suppliers (locally)
or sparse buyers

• Cost is often paid up front for development, so start time matters (if value
decreases over time)

• Usually a risk premium involved in estimate

90/90 Rule: The first 90 percent of the code accounts for the first 90 percent of
the development time. The remaining 10 percent of the code accounts for the
other 90 percent of the development time. — Tom Cargill, Bell Labs

Cost of software

• COCOMO as the first broad study, models like SEER, SLIM afterwards, use function points, use
case points or SLOC

Can one developer, part of a tester, part of a PM do a two-page spec in a month?

• Group “planning poker” when truly independent, maybe on Fibonacci sequences…

• Better than the alternative…
• Most projects are “expert estimated”, some are even estimated to available budget, I hear
• Most projects suffer the planning fallacy: optimistic estimates of things we may not have done before

(known-unknowns and unknown-unknowns) based on experience which is often “corrected”
• Technical complexity, size of spec, environmental complexity play a role

• The goal is not the specific model coefficients but that we keep a database of comparable
results and make better projections; corollary: models don’t help if you don’t use them!

• Architects need to not just understand but convey the limitations of the iron triangle if PMs
cannot

Parametric models are deadΧ Long live parametric models!

Customers want predictable cost (and more importantly predictable value)

• Once cost is fixed, the amount of software which can be delivered is fixed as well (you just may not
know it!)

• The customer could be brought more formally into prioritizing what gets done first (with the explicit
assumption that we can’t do everything)

• What mechanism can we put in place to get trued up on cost? How honest are you with your
customer? The buyer of the software also has to have management reserve and agree that outsourcing
involves profitability. Change orders? Cost or profit sharing?

• Architects can do things later in the project to reduce cost

• Agile does not really help us here

How to change procurement of software

LŦ ōǳƎǎ ŀǊŜ ол҈ ƻŦ ŎƻǎǘΧ

An agile perspective

Closer to
5K hours

Not far off

wǳƴƴƛƴƎ /h/hah ǘƻƻƭǎΧ

• Spend more time in requirements on the right activities (MVP activities)

• Set the patterns – not just GoF, but error handling, database persistence, queuing, message passing,
secure coding, how to test…

• Less doco, teams with longevity together, refactoring – agile

• Use tools, justify moving away from tools

• Determine the whole platform (COTS inclusion for basics & platform components)

• Really question one-off late requirements and “process descriptions” of how it works today; avoid
heavy integrations

• Pair programming or getting team members to work in different parts of code

• Describe bugs accurately – often in the rush to be responsive, we stop doing this…

• Fix the whole bug

• Fallacy #2: I can skip testing because my team writes better code than average

• Fallacy #3: I don’t need patterns and can use junior developers to get the rate structure down

How architects can reduce costs

Thank you!

Brian Loomis, CITA-P

bloomis@dewpoint.com

